Solution of the problem of the theoretical profile of non-dimensional speed on the thickness of the boundary layer at the turbulent flow in the boundary layer based on the solution of the differential equation of Abel of the second generation with the app
DOI:
https://doi.org/10.25726/NM.2018.1.1.004Keywords:
theoretical; modeling; mathematical; speed; coordinate; dimensionless; profile; heat exchange; turbulent; flow; boundary layer; the Abel differential equation; second kind; the first kind; Lambert function.Abstract
An exact analytical solution of the differential equation for tangential stresses in a turbulent boundary layer, which is a special case of the so-called " of the Abel differential equation of the second kind, obtained with the help of the special Lambert function, whereas previously it was assumed that it is not solvable in quadratures. In addition, several more important solved special cases of this equation were obtained. The analytic solutions obtained in the paper are predominantly different from the previously available either numerical or approximate solutions of the problem. The solution obtained in dimensionless form is the theoretical profile of the dimensionless velocity along the thickness of the boundary layer for turbulent flow in the boundary layer.
References
2. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции: Функции Бесселя, функции параболического цилиндра, ортогональные многочлены. М.: Наука, 1966. 296с.
3. Дубинов А.Е., Дубинова И.Д., Сайков С.К. W-функция Ламберта и её применение в математических задачах физики. Саров: ФГУП "РФЯЦ–ВНИИЭФ", 2006. 160с.
4. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1965. 577с.
5. Кутателадзе С.С. Основы теории теплообмена. М.: Атомиздат, 1979. 416с.
6. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергия, 1975. 488с.
==========
1. Lyakhov V.K., Migalin K.V. The effect of thermal or diffusional roughness. Saratov: Saratov University Publishing House, 1990. 176p.
2. Bateman G., Erdelyi A. Higher transcendental functions: Bessel functions, parabolic cylinder functions, orthogonal polynomials. M.: Nauka, 1966. 296p.
3. Dubinov A.E., Dubinova I.D., Saikov S.K. W-Lambert's function and its application in mathematical problems of physics. Sarov: FSUE "RFNC-VNIIEF", 2006. 160p.
4. Kamke E. Handbook of ordinary differential equations. Moscow: Nauka, 1965. 577 p.
5. Kutateladze S.S. Fundamentals of the theory of heat transfer. Moscow: Atomizdat, 1979. 416..
6. Isachenko V.P., Osipova V.A., Sukomel A.S. Heat transfer. M.: Energia, 1975. 488p.