A method of evaluating pigment complex wood plants as an indicator of adaptation to dry conditions
DOI:
https://doi.org/10.25726/NM.2018.1.1.006Keywords:
pigment complex, stress factors, adaptation, trees, shrubs, biodiversity, dendroflora enrichment, selection criteria, protective forest plantations.Abstract
The relevance of the research topic is related to the selection of adapted gene pool of trees and shrubs for the enrichment of forest reclamation complexes of degraded landscapes under the influence of stress factors. The experience of introduction in the arid zone of Russia showed that of several thousand taxa of tested trees and shrubs can successfully grow a little more than three hundred. To solve the problem of scientifically based selection of the range for the enrichment of dendroflora, taking into account the limiting stress factors of plant growth and development in various environmental conditions, it is necessary to conduct special experiments with a deep generalization and analysis of the results. The results of the experiment directly depend on the efficiency of the methods used.
The aim of the research is to compare and establish differences in the state of the pigment complex under the influence of stress factors using modern portable flavonide and CHLOROPHYLL dualex SCIENTIFIC+.
The article considers the possibility of determining the resistance of plant organisms to stress factors on the pigment complex. On the basis of comparative evaluation of quantitative measurements of chlorophyll a and b, carotenoids, leaf anthocyanins in the field using modern portable flavonide and chlorophyll meter DUALEX SCIENTIFIC+ the regularities of changes in the content of the pigment complex, reflecting the adaptive capacity of plants.
Objects of research were representatives of the species, molded and varietal diversity of trees and shrubs collection Fund FNTS Agroecology Russian Academy of Sciences, a Cluster growing in the arboretum Park VNIALMI(34:34:060061:10; Federal state unitary enterprise "Volgograd", 34:34:000000:122).
The paper presents an analysis of the field method of evaluation of pigment complex (chlorophyll a and b, carotenoids, anthocyanins) on the basis of optical wavelength spectra in healthy plants acceptable for quantitative data in spatial and temporal scales. The obtained materials are consistent with foreign studies and note the variation in the content of the pigment complex under the influence of environmental factors during the growing season. The range of chlorophyll a+b content in tree species was established from 11.50 to 46.95 mg/cm2. Differences in the effect of stress factors (air temperature-34,42-35,48 ° C, air humidity-15,5 – 16,0 %) in the content of flavonoids (in trees from 0,41 to 2,19 mg/cm2, shrubs-from 0.82 to 2.08 mg/cm2and anthocyanins (from 0.08 to 0.29 mg/cm2). The analysis of the pigment complex dynamics made it possible to identify promising groups of plants (species, forms, varieties) according to their adaptability to various adverse environmental effects.
References
2. Кулик К.Н., Свинцов И.П., Семенютина А.В. Эколого-экспериментальная интродукция хозяйственно ценных растений для агролесомелиорации // Доклады РАСХН. 2004. № 3. С. 19-24.
3. Кузнецов В.В., Дмитриева Г.А. Физиология растений. М.: Абрис, 2011. 783с.
4. Косулина Л.Г., Луценко Э.К., Аксенова В.А. Физиология устойчивости растений к неблагоприятным факторам среды. Ростов-н/Д.: РГУ, 1993. 240с.
5. Полевой В.В. Практикум по росту и устойчивости растений. – СПб.: Санкт-Петербургский университет, 2001. 212с.
6. Свинцов И.П., Семенютина В.А. Методологические основы изучения растительных организмов в условиях интродукции // Современная наука: актуальные проблемы теории и практики. Серия естественные и технические науки. 2014. №9-10. С. 42-47.
7. Семенютина А.В. Дендрофлора лесомелиоративных комплексов (под ред. И.П. Свинцова). Волгоград: ВНИАЛМИ, 2013. 266с.
8. Семенютина А.В., Костюков С.М., Кащенко Е.В. Методы выявления механизмов адаптации древесных видов в связи с их интродукцией в засушливые регионы // Успехи современного естествознания. 2016. №2. С. 103-109.
9. Bueno J.M., Saez-Plaza P., Ramos-Escudero F., Jimenez A.M., Fett R., and Asuero A.G. / Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part II: Chemical Structure, Color, and Intake of Anthocyanins. Critical Reviews in Analytical Chemistry 42, 2012; 126–151.
10. Croce R., van Amerongen H. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology 10; 2014; 492–501.
11. Chen M., Blankenship R.E. Expanding the solarspectrum used by photosynthesis. Trends in Plant Science 16, 2011; 427–431
12. Esteban R., Barrutia O., Artetxe U., Fernandez-Marın B., Hernandez A., and Garcıa-Plazaola J.I. Internal and external factors affecting photosynthetic pigment composition in plants: A meta-analytical approach. New Phytologist 206, 2015; 268–280.
13. Kiang N.Y., Siefert J., Govindjee, Blankenship R.E. Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology 7; 2007; 222–251
14. Gitelson A., Merzlyak M.N. Spectral relfectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology 143, 1994; 286–292.
15. Penuelas J. and Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3, 1998; 151–156.
16. Ritz T., Damjanovic A., Schulten K., Zhang J.P., Koyama Y. / Efficient light harvesting through carotenoids. Photosynthesis Research 66; 2000; 125–144.
17. Thayer S.S., Bjorkman O. Leaf Xanthophyll content and composition in sun and shade determined by HPLC. Photosynthesis Research 23; 1990; 331–343
18. Quemada M., Gabriel J.L., Zarco-Tejada P. Airborne Hyperspectral Images and Ground-level Optical Sensors As assessment tools for Maize nitrogen fertilization // Remote sensing. 2014. Vol. 6. Pp. 2940-2962; doi: 10.3390/rs6042940.
19. http://www.force-a.com/capteurs-optiques-optical-sensors/dualex-scientific-chlorophyll-meter/
==========
1. Goryunov Yu.D. Influence of ecological factors on the maintenance in the plants of some antioxidants: the author's abstract of the dissertation. Kaliningrad, 2009. 24p.
2. Kulik K.N., Svintsov I.P., Semenyutina A.V. Ecological and experimental introduction of economically valuable plants for agroforestry // Reports of the Russian Academy of Agricultural Sciences. 2004. № 3. Pp. 19-24.
3. KuznetsovV.V., Dmitrieva G.A. Plant physiology. Moscow: Abris, 2011. 783p.
4. Kosulina L.G., Lutsenko E.K., Aksenova V.A. Physiology of plant resistance to adverse environmental factors. Rostov-n / D .: RSU, 1993. 240p.
5. Polevoy V.V. Workshop on plant growth and resistance. St. Petersburg: St. Petersburg University, 2001. 212p.
6. Svintsov I.P., Semenyutina V.A. Methodological bases of studying plant organisms in conditions of introduction // Modern science: actual problems of theory and practice. A series of natural and technical sciences. 2014. № 9-10. Pp. 42-47.
7. Semenyutina A.V. Dendroflora forest-meliorative complexes (edited by I.P. Svintsov). Volgograd: VNIIALMI, 2013. 266p.
8. Semenyutina A.V,. Kostyukov S.M., Kashchenko E.V. Methods for revealing the mechanisms of adaptation of tree species in connection with their introduction into arid regions // Successes of modern natural science. 2016. №2. Pp. 103-109.
9. Bueno J.M., Saez-Plaza P., Ramos-Escudero F., Jimenez A.M., Fett R., and Asuero A.G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part II: Chemical Structure, Color, and Intake of Anthocyanins. Critical Reviews in Analytical Chemistry 42, 2012; 126-151.
10. Croce R., van Amerongen H. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology 10; 2014; 492-501.
11. Chen M., Blankenship R.E. Expanding the solarspectrum used by photosynthesis. Trends in Plant Science 16, 2011; 427-431
12. Esteban R., Barrutia O., Artetxe U., Fernandez-Marın B., Hernandez A., and Garcıa-Plazaola J.I. A meta-technical approach. New Phytologist 206, 2015; 268-280.
13. Kiang N.Y., Siefert J., Govindjee, Blankenship R.E. Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology 7; 2007; 222-251
14. Gitelson A., Merzlyak M.N. Spectral relapse changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology 143, 1994; 286-292.
15. Penuelas J. and Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3, 1998; 151-156.
16. Ritz T., Damjanovic A., Schulten K., Zhang J.P., Koyama Y. / Efficient light harvesting through carotenoids. Photosynthesis Research 66; 2000; 125-144.
17. Thayer S.S., Bjorkman O. Leaf Xanthophyll content and composition in sun and shade determined by HPLC. Photosynthesis Research 23; 1990; 331-343
18. Quemada M., Gabriel J.L., Zarco-Tejada P. Airborne Hyperspectral Images and Ground-level Optical Sensors // Remote sensing. 2014. Vol. 6. Pp. 2940-2962; doi: 10.3390 / rs6042940.
19. http://www.force-a.com/capteurs-optiques-optical-sensors/dualex-scientific-chlorophyll-meter/