THE KINEMATIC STRUCTURE OF THE MECHANISM OF THE EXOSKELETON

Авторы

  • Oleg Vladimirovich MALYUGA

Ключевые слова:

robotics, tree kinematic structure, synthesis of kinematic scheme, ergonomic design, exoskeleton, degrees of mobility.

Аннотация

The urgency of the development of robotic exoskeletons is substantiated. The task of synthesis of the kinematic scheme of the Executive mechanism of the exoskeleton is set and possible approaches to its solution are defined. The results of kinematic scheme synthesis obtained in CATIA and SolidWorks software systems are presented. The expediency of kinematic synthesis in the SolidWorks software package using anthropometric data proposed by the CATIA software package is substantiated. The obtained ranges of changes in the generalized coordinates of the joints of the actuator, equipped with electrohydraulic servo drives, are compared with similar ranges for humans.

The rapid development of robotics is explained by the need to increase productivity and improve the efficiency of work performed in various fields of human activity, among which the leading place is occupied by work in extreme conditions. This includes the elimination of the consequences of man-made and natural disasters, as well as the solution of problems associated with the manipulation and transportation of special- purpose cargo in the military field.

Библиографические ссылки

1. Antonellis, P., Galle, S., De Clercq, D., & Malcolm, P. (2018). Altering gait variability with an ankle exoskeleton. PLoS One, 13(10), e0205088. doi:10.1371/journal.pone.0205088
2. Chaichaowarat, R., Kinugawa, J., & Kosuge, K. (2018). Cycling-enhanced Knee Exoskeleton Using Planar Spiral Spring. Conf Proc IEEE Eng Med Biol Soc, 2018, 1-6. doi:10.1109/EMBC.2018.8512862
3. Chang, S. H., Zhu, F., Patel, N., Afzal, T., Kern, M., & Francisco, G. E. (2018). Combining robotic exoskeleton and body weight unweighing technology to promote walking activity in tetraplegia following SCI: A case study. J Spinal Cord Med, 1-4. doi:10.1080/10790268.2018.1527078
4. Chowdhury, A., Nishad, S. S., Meena, Y. K., Dutta, A., & Prasad, G. (2018). Hand- Exoskeleton Assisted Progressive Neurorehabilitation using Impedance Adaptation based Challenge Level Adjustment Method. IEEE Trans Haptics. doi:10.1109/TOH.2018.2878232
5. Gao, B., Wei, C., Ma, H., Yang, S., Ma, X., & Zhang, S. (2018). Real-Time Evaluation of the Signal Processing of sEMG Used in Limb Exoskeleton Rehabilitation System. Appl Bionics Biomech, 2018, 1391032. doi:10.1155/2018/1391032
6. Harethardottir, H. M., Male, R., Nilsen, F., Eichner, C., Dondrup, M., & Dalvin, S. (2019). Chitin synthesis and degradation in Lepeophtheirus salmonis: Molecular characterization and gene expression profile
9
during synthesis of a new exoskeleton. Comp Biochem Physiol A Mol Integr Physiol, 227, 123-133. doi:10.1016/j.cbpa.2018.10.008
7. Jang, J., Lee, J., Lim, B., & Shim, Y. (2018). Natural gait event-based level walking assistance with a robotic hip exoskeleton. Conf Proc IEEE Eng Med Biol Soc, 2018, 1-5. doi:10.1109/EMBC.2018.8513066
8. Johnson, A. P., Gorsic, M., Regmi, Y., Davidson, B. S., Dai, B., & Novak, D. (2018). Design and Pilot Evaluation of a Reconfigurable Spinal Exoskeleton. Conf Proc IEEE Eng Med Biol Soc, 2018, 1731- 1734. doi:10.1109/EMBC.2018.8512642
9. Li, Z., Li, J., Zhao, S., Yuan, Y., Kang, Y., & Chen, C. L. P. (2018). Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2018.2872595
10. Rodriguez-Ugarte, M., Ianez, E., Ortiz, M., & Azorin, J. M. (2018). Improving Real-Time Lower Limb Motor Imagery Detection Using tDCS and an Exoskeleton. Front Neurosci, 12, 757. doi:10.3389/fnins.2018.00757
11. Schweighofer, N., Wang, C., Mottet, D., Laffont, I., Bakhti, K., Reinkensmeyer, D. J., & Remy- Neris, O. (2018). Dissociating motor learning from recovery in exoskeleton training post-stroke. J Neuroeng Rehabil, 15(1), 89. doi:10.1186/s12984-018-0428-1
12. Shen, Y., Ma, J., Dobkin, B., & Rosen, J. (2018). Asymmetric Dual Arm Approach For Post Stroke Recovery Of Motor Functions Utilizing The EXO-UL8 Exoskeleton System: A Pilot Study. Conf Proc IEEE Eng Med Biol Soc, 2018, 1701-1707. doi:10.1109/EMBC.2018.8512665
13. Wang, D., Meng, Q., Meng, Q., Li, X., & Yu, H. (2018). Design and Development of a Portable Exoskeleton for Hand Rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 26(12), 2376-2386. doi:10.1109/TNSRE.2018.2878778
14. Wu, Q., & Wu, H. (2018). Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Sensors (Basel), 18(11). doi:10.3390/s18113611
15. Wu, Q., Wang, X., Chen, B., & Wu, H. (2018). Patient-Active Control of a Powered Exoskeleton Targeting Upper Limb Rehabilitation Training. Front Neurol, 9, 817. doi:10.3389/fneur.2018.00817
16. Yue, C., Lin, X., Zhang, X., Qiu, J., & Cheng, H. (2018). Design and Performance Evaluation of a Wearable Sensing System for Lower-Limb Exoskeleton. Appl Bionics Biomech, 2018, 8610458. doi:10.1155/2018/8610458

Дополнительные файлы

Опубликован

2019-05-18

Как цитировать

MALYUGA, O. V. (2019). THE KINEMATIC STRUCTURE OF THE MECHANISM OF THE EXOSKELETON. Вопросы экологии, 7(11), 3–10. извлечено от http://grreview.ru/index.php/wej/article/view/31

Выпуск

Раздел

Статьи

Наиболее читаемые статьи этого автора (авторов)