VARIETIES OF EXOSKELETONS

Авторы

  • Oleg Vladimirovich MALYUGA OnyxCom LLC

Ключевые слова:

exoskeleton, innovative devices, development, knowledge.

Аннотация

Exoskeletons are created to increase the muscular strength of a person and are intended mainly for two categories of users: for those who need rehabilitation for diseases of the musculoskeletal system, as well as for workers of physical labor. In this case, the exoskeleton can not cover the whole body, but only a certain part of it. For example, the hand, as in the case with the mechanism of x-Ar from Equipois company.

In the process of human life and its environment form a continuously functioning system of "man- habitat". Acting in the system of "man-habitat", a person continuously solves two main tasks: to ensure their needs for food, water, air and the creation and use of a system of protection against negative impacts from both the environment and from their own kind. The process of life is safe and comfortable human interaction with their environment, which may be industrial, urban, domestic or natural environment. Specialists in biomedical engineering can participate in the creation of devices and equipment, in the development of new procedures based on interdisciplinary knowledge, in research aimed at obtaining new information to solve new problems.

Библиографические ссылки

1. Androwis, G. J., Pilkar, R., Ramanujam, A., & Nolan, K. J. (2018). Electromyography Assessment During Gait in a Robotic Exoskeleton for Acute Stroke. Front Neurol, 9, 630. doi:10.3389/fneur.2018.00630
2. Baunsgaard, C. B., Nissen, U. V., Brust, A. K., Frotzler, A., Ribeill, C., Kalke, Y. B., . . . Biering-Sorensen, F. (2018). Exoskeleton gait training after spinal cord injury: An exploratory study on secondary health conditions. J Rehabil Med, 50(9), 806-813. doi:10.2340/16501977-2372
3. Carosio, F., Ghanadpour, M., Alongi, J., & Wagberg, L. (2018). Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohydr Polym, 202, 479-487. doi:10.1016/j.carbpol.2018.09.005
4. Deng, M., Li, Z., Kang, Y., Chen, C. L. P., & Chu, X. (2018). A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation. IEEE Trans Cybern. doi:10.1109/TCYB.2018.2864784
5. Exoskeleton. (2005). [sound recording]. Canada?: Latex Records,.
Force control theory and method of human load carrying exoskeleton suit. (2017). New York, NY: Springer Berlin Heidelberg.
6. Guanziroli, E., Cazzaniga, M., Colombo, L., Basilico, S., Legnani, G., & Molteni, F. (2018). Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control. Eur J Phys Rehabil Med. doi:10.23736/S1973-9087.18.05308-X
7. Heinemann, A. W., Jayaraman, A., Mummidisetty, C. K., Spraggins, J., Pinto, D., Charlifue, S., . . . Field-Fote, E. C. (2018). Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers. J Neurol Phys Ther, 42(4), 256-267. doi:10.1097/NPT.0000000000000235
8. Leclair, J., Pardoel, S., Helal, A., & Doumit, M. (2018). Development of an unpowered ankle exoskeleton for walking assist. Disabil Rehabil Assist Technol, 1-13. doi:10.1080/17483107.2018.1494218
9. Lerner, Z. F., Gasparri, G. M., Bair, M. O., Lawson, J. L., Luque, J., Harvey, T. A., & Lerner, A. T. (2018). An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy. IEEE Trans Neural Syst Rehabil Eng, 26(10), 1985-1993. doi:10.1109/TNSRE.2018.2870756
10. Li, J., Thakor, N., & Bezerianos, A. (2018). Unilateral Exoskeleton Imposes Significantly Different Hemispherical Effect in Parietooccipital Region, but Not in Other Regions. Sci Rep, 8(1), 13470. doi:10.1038/s41598-018-31828-1
11. Molteni, F., Gasperini, G., Cannaviello, G., & Guanziroli, E. (2018). Exoskeleton and End- Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. PM R, 10(9S2), S174-S188. doi:10.1016/j.pmrj.2018.06.005
12. Nasiri, R., Ahmadi, A., & Ahmadabadi, M. N. (2018). Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 26(10), 2026-2032. doi:10.1109/TNSRE.2018.2872889
13. Rahmani, M., & Rahman, M. H. (2018). Novel robust control of a 7-DOF exoskeleton robot. PLoS One, 13(9), e0203440. doi:10.1371/journal.pone.0203440
14. Verrusio, W., Renzi, A., Cecchetti, F., Gaj, F., Coi, M., Ripani, M., & Cacciafesta, M. (2018). The Effect of a Physical Training with the Use of an Exoskeleton on Depression Levels in Institutionalized Elderly Patients: A Pilot Study. J Nutr Health Aging, 22(8), 934-937. doi:10.1007/s12603-018-1044-2
15. Wei, W., Qu, Z., Wang, W., Zhang, P., & Hao, F. (2018). Design on the Bowden Cable-Driven Upper Limb Soft Exoskeleton. Appl Bionics Biomech, 2018, 1925694. doi:10.1155/2018/1925694
12

Дополнительные файлы

Опубликован

2017-12-25

Как цитировать

MALYUGA, O. V. (2017). VARIETIES OF EXOSKELETONS. Вопросы экологии, 7(12), 3–12. извлечено от http://grreview.ru/index.php/wej/article/view/32

Выпуск

Раздел

Статьи

Наиболее читаемые статьи этого автора (авторов)